Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Infect Dis ; 23(1): 164, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2276608

ABSTRACT

HIV-1 remains a global health concern and to date, nearly 38 million people are living with HIV. The complexity of HIV-1 pathogenesis and its subsequent prevalence is influenced by several factors including the HIV-1 subtype. HIV-1 subtype variation extends to sequence variation in the amino acids of the HIV-1 viral proteins. Of particular interest is the transactivation of transcription (Tat) protein due to its key function in viral transcription. The Tat protein predominantly functions by binding to the transactivation response (TAR) RNA element to activate HIV-1 transcriptional elongation. Subtype-specific Tat protein sequence variation influences Tat-TAR binding affinity. Despite several studies investigating Tat-TAR binding, it is not clear which regions of the Tat protein and/or individual Tat amino acid residues may contribute to TAR binding affinity. We, therefore, conducted a scoping review on studies investigating Tat-TAR binding. We aimed to synthesize the published data to determine (1) the regions of the Tat protein that may be involved in TAR binding, (2) key Tat amino acids involved in TAR binding and (3) if Tat subtype-specific variation influences TAR binding. A total of thirteen studies met our inclusion criteria and the key findings were that (1) both N-terminal and C-terminal amino acids outside the basic domain (47-59) may be important in increasing Tat-TAR binding affinity, (2) substitution of the amino acids Lysine and Arginine (47-59) resulted in a reduction in binding affinity to TAR, and (3) none of the included studies have investigated Tat subtype-specific substitutions and therefore no commentary could be made regarding which subtype may have a higher Tat-TAR binding affinity. Future studies investigating Tat-TAR binding should therefore use full-length Tat proteins and compare subtype-specific variations. Studies of such a nature may help explain why we see differential pathogenesis and prevalence when comparing HIV-1 subtypes.


Subject(s)
HIV-1 , Humans , HIV-1/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV Long Terminal Repeat , Amino Acids/genetics , Amino Acids/metabolism , RNA, Viral/metabolism
2.
PLoS One ; 16(2): e0247396, 2021.
Article in English | MEDLINE | ID: covidwho-1090539

ABSTRACT

Among various delivery systems for vaccine and drug delivery, cell-penetrating peptides (CPPs) have been known as a potent delivery system because of their capability to penetrate cell membranes and deliver some types of cargoes into cells. Several CPPs were found in the proteome of viruses such as Tat originated from human immunodeficiency virus-1 (HIV-1), and VP22 derived from herpes simplex virus-1 (HSV-1). In the current study, a wide-range of CPPs was identified in the proteome of SARS-CoV-2, a new member of coronaviruses family, using in silico analyses. These CPPs may play a main role for high penetration of virus into cells and infection of host. At first, we submitted the proteome of SARS-CoV-2 to CellPPD web server that resulted in a huge number of CPPs with ten residues in length. Afterward, we submitted the predicted CPPs to C2Pred web server for evaluation of the probability of each peptide. Then, the uptake efficiency of each peptide was investigated using CPPred-RF and MLCPP web servers. Next, the physicochemical properties of the predicted CPPs including net charge, theoretical isoelectric point (pI), amphipathicity, molecular weight, and water solubility were calculated using protparam and pepcalc tools. In addition, the probability of membrane binding potential and cellular localization of each CPP were estimated by Boman index using APD3 web server, D factor, and TMHMM web server. On the other hand, the immunogenicity, toxicity, allergenicity, hemolytic potency, and half-life of CPPs were predicted using various web servers. Finally, the tertiary structure and the helical wheel projection of some CPPs were predicted by PEP-FOLD3 and Heliquest web servers, respectively. These CPPs were divided into: a) CPP containing tumor homing motif (RGD) and/or tumor penetrating motif (RXXR); b) CPP with the highest Boman index; c) CPP with high half-life (~100 hour) in mammalian cells, and d) CPP with +5.00 net charge. Based on the results, we found a large number of novel CPPs with various features. Some of these CPPs possess tumor-specific motifs which can be evaluated in cancer therapy. Furthermore, the novel and potent CPPs derived from SARS-CoV-2 may be used alone or conjugated to some sequences such as nuclear localization sequence (NLS) for vaccine and drug delivery.


Subject(s)
COVID-19 Vaccines/chemistry , Cell-Penetrating Peptides/chemistry , Computational Biology , Computer Simulation , Drug Delivery Systems , Proteome , SARS-CoV-2/chemistry , Animals , COVID-19 , COVID-19 Vaccines/genetics , COVID-19 Vaccines/metabolism , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/metabolism , HIV-1/chemistry , HIV-1/genetics , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/genetics , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL